Section 4 \& 5 -Adding and Subtracting Fractions (2 weeks)

> "If adding or subtracting is your aim, the bottom numbers must be the same. Change the bottom using multiply or divide, but the same to the top must be applied. And don't forget to simplify, before it's time to say goodbye."

To add or subtract fractions with denominators that are multiples of the same number, we must change one fraction to have the same denominator.

Section 6 - Adding and Subtracting Mixed Numbers

When adding and subtracting mixed numbers, first change the mixed numbers to improper fractions before adding or subtracting as normal. Remember to convert the answer back to a mixed number.

Adding Mixed Numbers		To solve this problem, follow the steps outlined below.	$1 \frac{3}{4}+2 \frac{1}{8}$
$1 \frac{3}{4} \rightarrow \frac{4}{4}+\frac{3}{4} \rightarrow \frac{7}{4} \quad 2 \frac{1}{8} \rightarrow \frac{8}{8}+\frac{8}{8}+\frac{1}{8} \rightarrow \frac{17}{8}$ Change the mixed numbers into improper fractions. $\frac{7}{4}+\frac{17}{8}$			
	If the denominators are different, multiply the fractions so that they share the lowest common denominator.		
3	Add the fractions and then convert the answer back to a mixed number. $\frac{14}{8}+\frac{17}{8}=\frac{31}{8}$ 8 goes into 313 times with 7 remaining, therefore: $1 \frac{3}{4}+2 \frac{1}{8}=3 \frac{7}{8}$ $\frac{31}{8}=3 \frac{7}{8}$		
Subtracting Mixed Numbers To solve this problem, follow the steps outlined below. $2 \frac{2}{3}-1 \frac{1}{2}$			
1	$\begin{aligned} & \text { Change the mixed numbers } \\ & \text { into improper fractions. } \end{aligned} \frac{2 \frac{2}{3} \rightarrow \frac{3}{3}+\frac{3}{3}+\frac{2}{3} \rightarrow \frac{8}{3}}{3}-\frac{1}{2}$		
2	If the denominators are different, multiply the fractions so that they share the lowest common denominator.$\frac{8}{3} \stackrel{\times 2}{\infty} \frac{16}{6} \quad \frac{3}{2}{\underset{\underbrace{}}{x 3}=}_{=}^{9}$		
3	Subtract the fraction and then convert the answer back to a mixed number.$6 \text { goes into } 7 \text { once with } 1 \text { remaining, therefore: }$$\mathbf{2}^{\frac{2}{3}}-\mathbf{1}^{\frac{1}{2}}=\mathbf{1}^{\frac{1}{6}}$$\begin{aligned} & \frac{16}{6}-\frac{9}{6}=\frac{7}{6} \\ & \frac{7}{6}=1 \frac{1}{6} \end{aligned}$		

Try these methods with some of your own examples.

Show your workings to ensure this knowledge is secure.

Section 1-Fractions and Equivalent Fractions

A fraction is a number that expresses equal parts of a whole amount.

Unit fractions are any
fraction whose numerator is 1 .

$$
\frac{1}{4} \quad \frac{1}{2} \quad \frac{1}{4} \quad \frac{1}{16}
$$

How many equal parts is the whole divided into?

Equivalent fractions are fractions
which have the same value but look different.

$\frac{1}{2}=\frac{2}{4}=\frac{3}{6}=\frac{4}{8}=\frac{5}{10}=\frac{6}{12}$
(1)

$\frac{1}{3}=\frac{2}{6}=\frac{3}{9}=\frac{4}{12}=\frac{5}{15}=\frac{6}{18}$

Section 2-Improper Fractions and Mixed Numbers

An improper fraction is where the numerator is bigger than the denominator.

A mixed number is a number consisting of an integer (whole number) and a proper fraction

We can convert improper fractions into mixed numbers (and vice versa).

Section 3-Comparing and Ordering fractions

Comparing To look at two or more numbers to decide which is greater (>), lesser (<) or if they are equal (=) Ordering Putting things in the correct place following a rule e.g. Order from smallest to largest

